
J Math Chem (2014) 52:990–1006
DOI 10.1007/s10910-014-0305-5

ORIGINAL PAPER

Clar chains and a counterexample

Elizabeth J. Hartung

Received: 2 January 2013 / Accepted: 15 January 2014 / Published online: 29 January 2014
© Springer International Publishing Switzerland 2014

Abstract A fullerene is a 3-regular plane graph with only pentagonal and hexagonal
faces. The Fries and Clar number of a fullerene are two related parameters, and the
Clar number is less understood. We introduce the Clar Structure of a fullerene, a
decomposition designed to compute the Clar number for classes of fullerenes. We
also settle an open question with a counterexample: we prove that the Clar and Fries
number of a fullerene cannot always be obtained with the same Kekulé structure.

Keywords Fullerenes · Conjugated 6-circuits · Clar number · Fries number ·
Clar structure · Kekulé structure

1 Introduction

A fullerene � = (V, E, F) is a 3-regular plane graph with only hexagonal and pen-
tagonal faces. A Kekulé structure (or perfect matching) K ⊆ E on � is a set of edges
such that each vertex is incident with exactly one edge in K . The set of faces that
have i of their bounding edges in K is denoted by Bi (K ). The faces in B0(K ) are
called the void faces of K ; the faces in B3(K ) are called the benzene faces of K (also
known as conjugated 6-circuits, see [6]). The Fries number of � is the maximum
number of benzene faces over all possible Kekulé structures [2]; the Clar number of
� is the maximum cardinality of a set of independent benzene faces over all Kekulé
structures [1].
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2 Chains

We define a Clar structure of a fullerene � to be a set of hexagons C and edges A such
that each vertex of � is incident with exactly one element of C ∪ A and at most two
edges in A bound any face of �. Given a Clar structure (C, A), choose three alternating
edges on each face in C . Together with the edges in A, these edges form a Kekulé
structure, K . Note that the faces in C form a maximal independent set of benzene
faces in K . Conversely, given a fullerene � with a Kekulé structure K , we can form a
Clar structure (C, A) associated with K : take C to be a maximal independent set of
benzene faces and A to be the remaining edges in K . The Clar number of a fullerene
therefore is given by a Clar structure (C, A) with a maximum number of faces in C .

Lemma 1 Let � be a fullerene with |V | vertices and a Clar structure (C, A). Then
|C | = |V |

6 − |A|
3 .

Proof Every face in C contains six vertices and every edge in A contains two vertices.
Every vertex of � is incident with exactly one element of the Clar structure. Thus
6|C | + 2|A| = |V | and solving for |C | gives the result. ��

For a face f of �, we say that an edge a ∈ A exits f if a shares exactly one vertex
with f and that a lies on f if both vertices of a are incident with f. For a face f of �, any
face of C adjacent to f is incident with two adjacent vertices on f, as is any edge from
A that lies on f. Thus it is clear that an odd number of edges of A exit a pentagon, an
even number of edges of A (possibly zero) exit a hexagon.

For each face f of �, we construct a coupling of the edges of A exiting f as follows.
Choose edges exiting from adjacent vertices to form a couple if such a pair exists.
Continue coupling exit edges from adjacent vertices until either: all edges are coupled;
only a pair of edges exiting from opposite vertices of a hexagon remains and these
can be coupled; only a single exit edge of a pentagon remains. For each pentagon, we
call the uncoupled exit edge the initial edge for that pentagon. One easily checks that
Fig. 1 includes a complete listing of all such couplings. Note that edges of A exit a
face f from consecutive vertices around f or f is a hexagon with exactly two edges in
A exiting f from opposite vertices.

Fig. 1 All possible couplings around a face
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f'f

Fig. 2 A closed Clar chain, an open Clar chain, and two Clar chains. To represent pentagons, we insert a
60◦ wedge and identify the two rays bounding the edge

Each edge in A that is not an initial edge has two couplings, one over each face that
it exits. Each initial edge has at most one coupling. Given a coupling for a fullerene
�, define a Clar chain in � to be an alternating sequence f0, a1, f1, a2, . . . , ak, fk of
faces fi of � and edges ai in A such that ai and ai+1 are coupled edges exiting fi

for 1 ≤ i ≤ k − 1, a1 exits f0 and ak exits fk . If a1 (or ak) is not an initial edge,
f0 = fk and a1 is coupled with ak over f0. If f0 = fk , we say that the chain is
closed. A closed chain contains no initial edges and creates a circuit (see the leftmost
image in Fig. 2). We say the chain is open if it contains initial edges. In this case,
a1 and ak are initial edges, so f0 and fk are pentagons (see Fig. 2 center). A chain
f0, a1, f1, a2, . . . , ak, fk makes a sharp turn at fi if ai and ai+1 exit from adjacent
vertices of fi .

Clar chains will not cross one another by the definition of a coupling. However,
Clar chains may share faces. The rightmost image in Fig. 2 shows two chains sharing
the faces f and f ′.

Lemma 2 Let� be a fullerene with a Clar structure (C, A)and a coupling assignment.
There are exactly six open Clar chains connecting pairs of pentagons. There may
additionally be closed Clar chains.

Proof We know from Euler’s formula that a fullerene has exactly twelve pentagons.
From the fullerene � = (V, E, F) with a coupling, construct a new graph with vertex
set V and edge set A together with edges between coupled pairs. In this graph, the
twelve initial vertices exiting pentagons have degree 1 and the remaining vertices have
degree 2 (one edge from A and one from the coupling). Such a graph decomposes into
paths, circuits and isolated vertices. The six paths that terminate at initial vertices of
pentagons correspond to the six open Clar chains, and any remaining circuits corre-
spond to closed Clar chains. ��

3 Face 3-colorings

We define a hexagonal patch to be a plane graph in which all faces are hexagons
except for one outside face, all vertices are of degree 2 or 3 and all vertices of degree
2 are incident with the outside face. The hexagonal patches of interest to us may be
thought of as regions of the hexagonal tessellation of the plane. Such a hexagonal
patch inherits a face 3-coloring that is unique up to interchanging the color classes
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Fig. 3 Kekulé structure with
face 3-coloring. The void faces
are in the blue color class. Thick
edges represent edges in the
Kekulé structure. (Color figure
online)

Yellow

Red

Blue

Fig. 4 An open chain in a fullerene and in the expansion

and each color class is a maximal face-independent set. We construct a partial Kekulé
structure over such a patch in the following way: choose one color class to be the set
of void faces. Let all of the edges not bounding a void face be in the Kekuké structure.
On the interior of this patch, all of the faces in the other two color classes are benzene
faces. Figure 3 shows a patch with a face 3-coloring and associated Kekulé structure.
The blue faces are the void faces, the red and yellow faces are all benzene faces and
this set is part of a potential Fries set. Furthermore, either the red faces or the yellow
faces can be chosen as part of a potential Clar set. This partial Kekulé structure over a
face 3-colored hexagonal patch is “ideal” in the sense that there is no loss to the count
of benzene faces or independent benzene faces.

Over a patch of faces that includes a pentagon, a face 3-coloring is clearly not
possible. Thus any face coloring of a fullerene using three colors is an improper face
3-coloring. We now use the Clar structure of a fullerene to construct an improper face
3-coloring of �.

We define the expansion E(C, A) to be the graph obtained by the following opera-
tion: widen the edges in A into quadrilateral faces. Each vertex incident with an edge
in A becomes an edge, and each edge in A splits lengthwise into two edges (see Fig. 4).
We show that E(C, A) is face 3-colorable using the following result, which appears
as Theorem 2.5 in Saaty and Kainen [7].

Theorem 1 A 3-regular plane graph is face 3-colorable if and only if each face has
even degree.

Lemma 3 Let � be a fullerene with a Clar structure (C, A). The expansion E(C, A)

is face 3-colorable. All faces of E(C, A) corresponding to faces in C and edges in A
in � are in one color class of E(C, A). Furthermore, � has an associated improper
face 3-coloring for which the only improperly colored faces are those that share edges
in A. For a Clar chain f0, a1, f1, a2, f2, . . . , ak, fk in this improper 3-coloring, the
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faces fi are all in one of the remaining two color classes, and the faces incident with
edges in A over the chain are all in the third color class.

Proof Let f be a face of degree d in the fullerene �. If j edges from A exit f, then the
corresponding face in E(C, A) has degree d + j . Pentagons in � are exited by an odd
number of edges from A, hexagons by an even number of edges from A. Thus every
face in E(C, A) is of even degree, and E(C, A) is face 3-colorable by Theorem 1.
Since every vertex of � is incident with exactly one element of C ∪ A, the faces of
E(C, A) corresponding to the faces in C and the edges in A comprise one color class.
Suppose that these faces are blue.

Let f0, a1, f1, a2, f2, . . . , ak, fk be a Clar chain (where fk = f0 if the chain is
closed). Consider a face fi exited by the edges ai−1 and ai . Let di and gi be the faces
incident with ai . In the expansion E(C, A), the face a′

i is blue. Assume that fi is red.
Then gi and di must each be in a third color class, yellow, since they are each incident
with a′

i and fi . The edge ai is also incident with the face fi+1, and fi+1 is adjacent
to gi , di , and a′

i in the expansion, so fi+1 must also be in the red color class. Hence
each face f j in the chain is red and all faces incident with an edge a j in the chain are
yellow.

We associate this face 3-coloring of E(C, A) with an improper face 3-coloring of
�. We return to the fullerene � by collapsing each quadrilateral of E(C, A) back into
an edge in A while retaining the coloring of the remaining faces. Two faces of � that
share an edge in A correspond to opposite faces around a quadrilateral of E(C, A),
and accordingly have the same color. Two faces of � that share an edge not in A share
the same edge of E(C, A) and hence are assigned different colors. ��

We now consider closed Clar chains and determine when they exist. Let C =
{ f0, a1, f1, a2, f2, . . . , ak, fk = f0} be a closed Clar chain. The faces of the fullerene
are now partitioned into three parts: the faces f0, f1, . . . , fk of the chain and two
patches. We say that the patch containing the least number of pentagons is the interior
of C and the patch on the other side of the chain is the exterior. If both sides contain the
same number of pentagons, we arbitrarily choose one patch to be the interior. Suppose
some face fi in a closed Clar chain C is a pentagon. Then fi is joined by an open Clar
chain to another pentagon p. This open Clar chain is either exclusively in the interior
or the exterior of C since chains do not cross one another. We say that C contains the
pentagon p if p is in the interior of C or if the open chain initiated by p is contained in
the interior of C. Thus any closed Clar chain contains an even number of pentagons.

Lemma 4 Let � be a fullerene with a Clar structure (C, A) and an associated cou-
pling. If |C | is the Clar number for �, then every closed Clar chain contains a pentagon.

Proof Consider a closed Clar chain containing no pentagons. There may additionally
be nested closed chains in the interior; let C = { f0, a1, f1, a2, f2, . . . , ak, fk = f0} be
the innermost closed Clar chain. For i = 1, 2, ..., k, let gi and di be the faces incident
with ai on the interior and exterior of the chain, respectively. Give � the improper face
3-coloring associated with (C, A), and assume that C is contained in the blue color
class. By Lemma 3, all faces fi belong to a second color class, say yellow, and all
gi and di are in the remaining color class (red). Since Clar chains do not cross one
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another, there are no edges from A in the interior of this innermost Clar chain and thus
all the faces on the interior of C are properly 3-colored. Consider two faces gi and di

that share an edge ai of the chain. The faces gi and di are red, and are each adjacent
to the yellow faces fi−1 and fi . The interior face gi conforms with the proper face
3-coloring of the interior of the chain. If the interior coloring continued to the exterior
face di , then di would be blue. We see that this is the case for all of the improperly
colored faces d j , g j incident with edges a j over the chain for 1 ≤ j ≤ k. The faces
{d j } together with the set of blue faces in the interior of the chain form an independent
set. If we interchange the blue and red color classes within the interior of the chain,
then the set of faces in the interior together with the faces {d j } are properly face 3-
colored. All vertices on the chain and its interior are then incident with exactly one
blue face. Let C ′′ be the collection of all blue faces and let A′′ = A \ {a1, a2, . . . , ak}.
Now (C ′′, A′′) is a Clar structure, and |C ′′| > |C | by Lemma 1, so |C | is not the Clar
number for �. ��

The position of the two faces of a fullerene in relation to one another is given by
their Coxeter coordinates. A shortest dual path between nearby faces can be drawn as
two straight line segments with a 120◦ left turn between them, or in some cases, as
one straight line segment. In the case with a 120◦ left turn, the Coxeter coordinates
are given as the ordered pair (m, n): a straight line segment containing m faces before
a 120◦ left turn, and another with n faces after the turn. In the case with one straight
line segment of length m, the coordinate is given just as (m) (see Figs. 5, 6).

Define a straight chain segment to be an alternating chain f0, a1, f1, a2, . . . , ak, fk

of edges in A and hexagons fi such that the edges ai and ai+1 exit from opposite
vertices of fi for each i . A straight chain segment with k edges in A connects a pair of
faces with Coxeter coordinates (k, k). We can visualize a straight chain segment with
k edges as the diagonal of a parallelogram with edges of length k through faces and
with the straight chain along the diagonal of the parallelogram (see Fig. 5). Note that
every Clar chain in a fullerene � is a sequence of straight chain segments with only
sharp turns.

We say that a Clar structure (C, A) has a coupling with non-interfering Clar chains
if for every pair of pentagons p1 and p2 joined by a Clar chain, there is no other
pentagon that has a vertex in common with any shortest chain joining p1 and p2 in
any coupling of (C, A). For the rest of this paper, we consider pairs of pentagons that
can be joined by non-interfering Clar chains. When more than two pentagons interact,
chains can become quite complicated (see [5]).

Lemma 5 Assume two pentagons are joined by a non-interfering Clar chain. Then
any shortest Clar chain joining them is composed of alternating right and left turns.

Proof If a Clar chain takes two consecutive right turns, we have turned 120◦ and
are traveling toward the first straight chain segment. Thus a face reached by two
consecutive right turns could be reached by two shorter segments. ��

Suppose the chain connecting pentagons p1 and p2 consists of a straight chain
segment with k edges in A, then a sharp left turn followed by a straight chain segment
with l edges in A. If we position p1 at the “origin,” the first straight chain segment goes

123



996 J Math Chem (2014) 52:990–1006

Fig. 5 A straight chain segment
with 6 edges in A joining a pair
of faces with Coxeter
coordinates (6,6). Thick edges
represent edges in A

to the face with Coxeter coordinates (k, k). The side of the second parallelogram goes
backwards 2l faces along the side of the first parallelogram (in the first coordinate)
and l faces in the positive direction in the second coordinate. If 2l ≤ k, the second
parallelogram ends at p2 with coordinates (k − 2l, k + l). (See Fig. 6a.) If we instead
have a sharp right turn and 2l ≤ k, then the coordinates are reversed, and the segment
has Coxeter coordinates (k + l, k − 2l).

If 2l > k ≥ l, then going backwards 2l faces in the first coordinate after a sharp
left turn takes us to k − 2l < 0. Since this is negative, we re-orient the segment so that
it is in the positive direction, and we have 2l − k as our second Coxeter coordinate.
In the case of a sharp left turn, going backwards 2l faces takes us past the point (k);
it takes us to the coordinate (2k − 2l, 2l − k). Going forwards l faces in the now-first
coordinate takes us to (2k − l, 2l −k). (See Fig. 6b.) For a sharp right turn, the Coxeter
coordinates of the segment are (2l − k, 2k − l).

Lemma 6 Suppose we want to connect two faces of a fullerene � by a Clar chain and
the orientations of the parallelograms are given. If the segments alternate between
right and left turns, the sum of the edges in A over the Clar Chain is the same regardless
of the number of turns.

Proof If a chain alternates between right and left turns, the j th parallelogram is in the
same orientation as the first parallelogram for j odd, and in the same orientation as the
second for j even since all turns are at 60◦ angles. Any parallelograms with the same
orientation are adding edges to A in the same direction. Thus one parallelogram with
k edges in |A| reaches the same face as r parallelograms with k1, k2, . . . , kr parallel-
ograms in the same orientation such that k1 + k2 + · · · + kr = k. So a parallelogram
with k edges in A followed by a parallelogram with l edges in A reaches the same
point as any number of parallelograms with alternating turns such that diagonals of
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(0, 0)

(a) (b)

p1

p2 (5, 5)

(5-4, 5+2)

(0, 0)p3

p4

(5, 5)(10-4, 8-5)

Fig. 6 Pairs of pentagons connected by two straight chain segments. a A straight chain segment of length
k = 5 followed by a straight chain segment of length l = 2. The Coxeter coordinates between p1 and p2
are (1, 7). b A straight chain segment of length k = 5 followed by a straight chain segment of length l = 4.
The Coxeter coordinates between p3 and p4 are (6, 3).

the odd-numbered parallelograms add up to k and the diagonals of the even-numbered
parallelograms add up to l. ��

4 Calculating the number of edges in A over a Clar chain

To find the Clar number for classes of fullerenes, we would like to calculate the number
of edges in A over Clar structures (C, A) for these fullerenes, since |C | = |V |

6 − |A|
3 .

By Lemmas 5 and 6, a chain with at most a single turn contributes a minimum number
of edges to A.

Consider two pentagons p1 and p2 that are joined by a Clar chain. Start with the
hexagonal tessellation and at each pentagon, cut out a 60◦ wedge and identify the
rays bounding the wedge. Assign the faces the improper face 3-coloring given by the
chain. The chain and the two wedges split our region and the face 3-colorings above
and below the split must match when the wedges are collapsed (see Fig. 7). For any
Clar structure (C, A), the edges in A in the Clar chain between p1 and p2 together
with the faces in C must contain each vertex of the patch exactly once.

Suppose that the Coxeter coordinates of the segment between p1 and p2 are (m, n).
We can assume without loss of generality that m ≥ n. Begin with p1 at the origin and
consider a parallelogram with sides parallel to the directions of the Coxeter coordinates
(see Fig. 7). We define the chain to be of Type 1 if each vertex of p1 outside of the
parallelogram is covered by a face in C . The chain is of Type 2 if exactly two of the
vertices outside of the parallelogram are covered by a face in C . The chain is of Type
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P2

P1

Fig. 7 If the yellow faces contain the set C , this chain is of Type 1. If the red faces contain C , the chain is
of Type 2. If the blue faces contain C , it is of Type 3. (Color figure online)

3 if none of the vertices outside of the parallelogram is covered by a face in C . The
following Lemma is tedious but not difficult to prove, for details see [5].

Lemma 7 Let p1 and p2 be two pentagons joined by a chain and let (m, n) [or (m)]
be Coxeter coordinates of the segment between them, where m ≥ n. Then m ≡ n (mod
3) and

(i) A chain of Type 1 contributes m edges to A;
(ii) A chain of Type 2 contributes m + n edges to A;

(iii) A chain of Type 3 contributes 3m + 2 edges to A.

Lemma 8 Let � be a fullerene with a Clar structure (C, A) and a coupling. If |C | is
the Clar number for �, then any closed chain C containing exactly two pentagons p1
and p2 together with the open Clar chain connecting the pentagons contributes the
same number of edges to A as a Clar chain of Type 3 between p1 and p2.

Proof Let C = { f0, a1, f1, a2, f2, . . . , ak, fk = f0} be a closed Clar chain con-
taining exactly two pentagons p1 and p2. There must be some open Clar chain
p1, e1, h1, e2, h2, . . . , el , p2 joining p1 and p2 that is contained in C. Give � an
improper face 3-coloring associated with the Clar structure (C, A). By Lemma 3,
we can assume without loss of generality that the faces of C are blue in this face
3-coloring, and that the faces f0, f1, f2, . . . , fk = f0 of C are red.

Suppose the Coxeter coordinates between p1 and p2 are (m, n) with m ≥ n. Note
that a closed chain surrounding p1 and p2 has at least 2(m + 1) edges in A, as well as
edges from A in the open chain.

Consider the case in which the faces p1, h1, h2, . . . , p2 of the open chain are also
in the red color class. We can remove the closed chain by interchanging the colors
blue and yellow in the interior. After this change, the pentagons p1 and p2 are still red.
Since they are not in the color class containing C , the chain between the pentagons
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is of Type 1 or Type 2. We know from Lemma 7 the chain contributes at most m + n
edges to A. Therefore, deleting the closed chain and interchanging the interior face
colors decreases A. Such a closed chain does not exist in a Clar structure that attains
the Clar number.

Consider the case in which the faces of the open chain p1, h1, h2, . . . , p2 are in
the yellow color class. Removing the closed chain interchanges the colors of the
blue and yellow faces, so p1 and p2 would be in the blue color class. Since the
pentagons cannot be in the set C , we no longer have a vertex covering (C, A). This
results in a chain of Type 3: there are 3m + 2 edges in A connecting the pentagons,
and all vertices of the pentagons are covered by edges in A. Therefore, the open
chain p1, e1, h1, e2, h2, . . . , el , p2 (at least m edges) together with the closed chain
f0, a1, f1, a2, f2, . . . , ak, fk = f0 contributes at least 3m + 2 edges to A. If it does
not contribute exactly 3m + 2 edges to A, this Clar structure would not attain the Clar
number. ��

Let � be a fullerene that allows a coupling of a Clar structure with non-interfering
Clar chains. Let (mi , ni ) be the Coxeter coordinates of the segments between each
pair of pentagons connected by a Clar chain for 1 ≤ i ≤ 6. For an arbitrary Clar
structure of �, there are three choices for the set of faces containing C outside of
the regions containing the pairs of pentagons. These three choices give three distinct
Clar structures. Given one of these Clar structures, the number of edges contributed
to |A| by the pair with Coxeter coordinates (mi , ni ) is given by Lemma 7. For each
of the three choices, we determine the total number of edges in |A| and let M be the
minimum of these three sums. We define such a pairing of pentagons to be widely
separated over the fullerene if for any two pentagons that are not paired together, one
of the Coxeter coordinates of the segments joining them is at least M

2 − 2.

Lemma 9 Let � be a fullerene over which the pairs of pentagons are widely separated.
If (C, A) is a Clar structure that attains the Clar number for �, then (C, A) cannot
include a closed chain containing more than two pentagons.

Proof Suppose (C, A) is a Clar structure that attains the Clar number for �, and
that (C, A) includes a closed Clar chain C = { f0, a1, f1, a2, f2, . . . , ak, fk = f0}
containing more than two pentagons. Any closed chain contains an even number of
pentagons, so C must contain at least 4 pentagons. By definition of widely separated,
C contains at least two pairs of pentagons for which one of the Coxeter coordinates
of the segments joining them is at least M

2 − 2. Therefore the length of C is at least
2( M

2 − 2) + 2 = M − 2. There are additional edges in A for each of the six chains
between paired pentagons, so the total contribution to |A| is greater than M . Thus,
(C, A) does not attain the Clar number for �. ��
Theorem 2 Let � be a fullerene over which the pairs of pentagons are widely sepa-
rated. Let M be the minimum sum of the edges in A over the three possible choices
for the face set containing C. Then |V |

6 − M
3 is the Clar number for �.

Proof By Lemma 2, any Clar structure (C, A) over � contains six Clar chains con-
necting pairs of pentagons. Let M denote the minimum number of edges in A over the
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Fig. 8 The left figure shows the auxiliary graph for this class of fullerenes. The pentagon a′ in the fullerene
represented by the auxiliary graph is on the right

three possible choices for the set C . If a different pairing is chosen for any pentagon,
then there are at least two new pairs of pentagons. For each new pair, one of the Coxeter
coordinates is at least M

2 − 2 since the original chains were widely separated. Chains
connecting the other four pairs each contribute at least one edge to A, giving a total
of at least M edges in A. By Lemma 9, any closed Clar chain containing more than
one pair of pentagons increases the size of A. Thus any other Clar structure contains
at least M edges in A. The conclusion follows by Lemma 1. ��

5 Calculating the Clar number for an infinite family of fullerenes

We use the methods of the previous section to calculate the Clar number for a class
of fullerenes as an example. This class is taken from Graver’s “A Catalog of All
Fullerenes with Ten or More Symmetries” [3], and the Clar number is found when the
parameters are such that we have pairs of pentagons that are widely separated.

Figure 8 shows an auxiliary graph that represents a general fullerene in this class.
The vertices represent the twelve pentagons in the fullerene. The edges represent
segments between nearby pentagons, and the colors code the Coxeter coordinates of
these segments. The numbers shown represent angle types between two segments
joined by a common pentagon, and the meaning of these numerals is shown on the
right in Fig. 8. For a detailed description, see [3]. Different choices for parameters
r, p, and s result in all fullerenes within this family. Graver showed in [3] that the
number of vertices for a fullerene in this family is 12r2 + 2s2 + 12rs + 12p(2r + s).
These fullerenes are widely separated when p is much smaller than r (an inequality
is given shortly). In this case, the six open Clar chains must pair pentagons joined by
segments with Coxeter coordinates (p, p). There are several cases depending on the
congruence classes of r and s modulo 3. We consider the case in which r �≡ 0 (mod
3) and r ≡ s (mod 3), giving r + s �≡ 0 (mod 3).

Let a, b, c, d, e, f be pentagonal faces on the fullerene in clockwise order as shown.
In a partial face 3-coloring that avoids the Clar chains between segments with Coxeter
coordinates (p, p), a and b are in different color classes since the segment between
a and b has coordinate (r + s), where r + s �≡ 0 (mod 3). Similarly, the segment
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between b and c has Coxeter coordinate (r), and so b and c are in different color
classes. Since r �≡ 0 but r ≡ s (mod 3), r + s �≡ r (mod 3), so a and c are in different
color classes. Thus a and d are in one color class (red), b and e are in a second color
class (yellow), and c and f are in a third color class (blue). Each of these pentagons
is paired over a (p, p) segment with another pentagon (a with a′, b with b′, and so
on), so each pair is in the same color class. Note that the Coxeter coordinates between
a and the yellow face b are (r + s), the coordinate between d and the yellow face e
is (r). There are two possibilities for the position of the yellow color class around a
red pentagon. The pentagon a and the pentagon d must each have a different position
with respect to the yellow faces. Thus all six possible colorings around these segments
are represented. The type of Clar chain only depends on the position of the faces
in the color class containing C . This class is symmetric, and regardless of the color
chosen, there are two chains of each of the three types. Thus the total contribution to
A is 2p + 2(p + p) + 2(3p + 2) = 12p + 4. The next closest pentagons that are
unpaired have coordinates (r). This choice of Clar chains is widely separated when
r ≥ 12p+4

2 − 2 = 6p. Thus, when the chains are widely separated, the Clar number is

|V |
6

− |A|
3

= 12r2 + 2s2 + 12rs + 12p(2r + s)

6
− 12p + 4

3

= 2r2 + 1

3
(s2 − 4) + 2rs + 4r p + 2p(s − 2)

Note that s �≡ 0 (mod 3), so s2 ≡ 1 (mod 3) and the above expression is always
an integer. This example illustrates our computational approach to the Clar number.
Using these techniques in conjunction with the Catalog [3], the Clar number can be
easily computed for many infinite families of fullerenes.

6 Class for which the Clar and Fries number cannot be attained by the same
Kekulé structure

It is part of the folklore of fullerenes that a set of independent benzene faces that attains
the Clar number for a fullerene is contained in the set of benzene faces that gives the
Fries number. In this section, we describe a class of fullerenes for which this does not
hold: for fullerenes in this class, any Kekulé structure that attains the Fries number
cannot give the Clar number; any Kekulé structure that attains the Clar number cannot
give the Fries number.

In the examples we construct here, pairs of nonadjacent pentagons are joined by a
single edge, and we refer to such patches as basic patches. These basic patches are
widely separated to ensure that no other pairing of pentagons could yield the Fries or
Clar number. A partial 3-coloring can be constructed except over the basic patches.
We can begin to construct a Kekulé structure consisting of edges connecting the faces
in one color class as described previously. This structure must be extended inside each
basic patch to complete the Kekulé structure.

To achieve the Clar number, this extension must be chosen so that |A| is minimized.
We know from [4] that the number of benzene faces over a Kekulé structure K is given
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V
C

(a) (b)

Fig. 9 Around this basic patch, the void faces are blue, the Clar faces are red. a A partial face 3-coloring
outside of a basic patch. b A partial Kekulé structure given by the choice of void faces. (Color figure online)

by |B3(K )| = |V |
3 − |B1(K )|+2|B2(K )|

3 . To attain the Fries number, this extension must
be chosen so that |B1(K )|+2|B2(K )| is minimized. We refer to |A| as the Clar deficit
and |B1(K )| + 2|B2(K )| as the Fries deficit.

To construct the partial Kekulé structure outside of the basic patches, we choose
one color class of independent faces to be the void faces. We must then choose another
color class to be the set C contributing to the Clar number. Thus there are six possible
options for choosing the partial Kekulé structure and the partial Clar structure. In
Sect. 6.1, we show that for exactly one of these six choices around a basic patch, no
completion of the Kekulé structure simultaneously minimizes the contribution to |A|
and |B1(K )| + 2|B2(K )| over the patch. In Sect. 6.2, we construct fullerenes with
six basic patches so that for each of the six choices for void and Clar faces, exactly
one of these basic patches requires different extensions of the Kekulé structure to
minimize the Clar deficit and the Fries deficit. Thus for our class of fullerenes, no
Kekulé structure attains both the Fries and the Clar number for the fullerene.

6.1 A choice for the void and Clar faces that requires two Kekulé extensions

Figure 9a depicts a basic patch. For the faces surrounding the basic patch, the blue
faces are chosen to be void and the red faces are chosen to be Clar faces. Figure 9b
shows the partial Kekulé structure given by this choice of void faces; all edges that
join two blue faces are in the partial Kekulé structure. We need to extend this to a
Kekulé structure.

Extension 1 We first extend the Kekulé structure to minimize the Clar deficit. Outside
the patch, we start with a partial Kekulé structure in which each red hexagonal face is a
benzene face (Fig. 9b). None of the ten vertices incident with a pentagon is covered by
a face in C , so these vertices must be covered by edges from A in the vertex covering
(C, A). In the partial Kekulé structure, every hexagon that is not in C is adjacent to a
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(a) (b)

Fig. 10 Extensions 1 and 2 on a basic patch where the Clar faces are red and the void faces are blue.
a Extension 1 minimizes the Clar deficit. Here |A| = 5 and |B1(K )| = 4, |B2(K )| = 6, |B1(K )| +
2|B2(K )| = 16. b Extension 2 minimizes the Fries deficit. Here |A| = 8 and |B1(K )| = 2, |B2(K )| =
4, |B1(K )| + 2|B2(K )| = 10. (Color figure online)

face in C . Thus no extension can increase |C | over the patch. Any extension that does
not reduce |C | must cover only the ten vertices incident with the pentagons. There is
only one perfect matching for these ten vertices, and it is shown as a completion of the
Kekulé structure in Fig. 10a. Note that this is a Clar chain of Type 3 between the two
pentagons. Over the patch in this extension, |A| = 5 and |B2(K )| = 6, |B1(K )| = 4,
giving |B1(K )| + 2|B2(K )| = 16.

Extension 2 The Kekulé structure in Fig. 10b has |A| = 8 and |B2(K )| =
4, |B1(K )| = 2, giving |B1(K )| + 2|B2(K )| = 10. While |A| is not minimized,
B2(K ) and B1(K ) are both smaller than in Extension 1. Extension 1 is the only exten-
sion that minimizes the Clar deficit, and that extension does not minimize the Fries
deficit. Thus for this choice of void and Clar faces over a basic patch, any structure
that contributes the maximum number of faces toward the Clar number over this patch
cannot achieve the maximum number of benzene faces.

6.2 Extending Kekulé structures over basic patches with other choices for the void
and Clar faces

We show that the choice for the void faces and faces in C described in Sect. 6.1 is
the only case over such a patch for which |A| and |B1(K )| + 2|B2(K )| cannot be
minimized simultaneously.

Let the blue faces be the void faces and the yellow faces be the Clar faces. Then the
Kekulé structure in Fig. 10b has a minimal Fries deficit of |B1(K )|+ 2|B2(K )| = 10.
Every yellow hexagon is a benzene face, so we also have a maximum number of faces
contributing to the Clar count, with |A| = 2 (a Clar chain of Type 2).

Suppose that the void faces are in the color class that includes the pentagons (here,
the red faces). Then the edges joining these faces complete a Kekulé structure over
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(a) (b)

Fig. 11 Over a basic patch, we choose other color classes for the void and Clar faces and consider extensions
of the resulting Kekulé structure. a The red faces represent the void faces. b The yellow faces are void.
(Color figure online)

the patch, as seen in Fig. 11a. |B1| = |B2| = 0, so the number of benzene faces over
the patch is clearly maximized. We must also choose a color class to be the Clar faces.
Since all hexagons in the remaining two color classes are benzene faces, |C | is also
maximized over the patch for either choice.

Suppose that the yellow faces are the void faces. Begin a partial Kekulé structure
consisting of all edges that join two yellow faces. Extend this Kekulé structure so that
all blue and red hexagons are benzene faces as in Fig. 11b. For either choice of the
Clar faces, |C | is clearly maximized over this patch. |B1| = |B2| = 2, and any local
change increases |B1(K )| + 2|B2(K )| and decreases the number of benzene faces.

We see that for every case except that described in Sect. 6.1, the same Kekulé
structure maximizes the number of faces contributing to the Clar number and the Fries
number over the basic excluded patch.

6.3 Fullerenes over which the Clar and Fries numbers cannot be attained
simultaneously

To force the existence of a patch in which these parameters cannot be maximized by
the same Kekulé structure, we need a fullerene with 6 basic patches so that one of them
is the exceptional patch for each the six choices of C and the void faces. One infinite
class of examples is the class considered in Sect. 5 and shown in Fig. 8. The dotted
edges represent the excluded patches which, in our example, are pairs of pentagons
joined by a single edge. Furthermore, the partial face 3-coloring is different around
each of the six excluded patches. Thus regardless of which of the six color choices for
the color class of the void faces and the color class of the Clar faces is made, one of
the six patches is such that one Kekulé structure maximizes the Clar number, while
another Kekulé structure maximizes the Fries number, and the two parameters cannot
be maximized simultaneously.
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Fig. 12 The Clar faces are red and the void faces are blue. An arrow indicates the patch over which the
Fries and Clar deficits cannot be minimized simultaneously. a minimizes the Clar deficit, b minimizes the
Fries deficit. The numerals represent faces in the sets B1 and B2. (Color figure online)

An example with s = 1, r = 7 is shown in Fig. 12. Since fullerenes in this class
with r ≥ 7 are widely separated, the Clar number is achieved by a Kekulé structure
with Clar chains between pentagons together in basic patches. In this coloring, the red
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faces indicate the set containing C and the void set is contained in the blue color class.
A pair of pentagons lies in a basic patch on each interior corner. The edges in A are
represented by thick red edges and the remaining edges in the Kekulé structure are
represented by thick blue edges. An arrow indicates the excluded patch over which
the number of faces in C and the number of benzene faces cannot be maximized
simultaneously.

In the first figure, there are 272 benzene faces and there are 135 faces in C . In the
second figure, there are 274 benzene faces and 134 faces in C . The first figure attains
the Clar number but not the Fries number for the fullerene, and the reverse is true for
the second. Hence the set of faces that attains the Clar number is not contained in a
set of faces that attains the Fries number.
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